Winter Sale - Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dpm65

Professional-Machine-Learning-Engineer Google Professional Machine Learning Engineer Questions and Answers

Questions 4

You built a deep learning-based image classification model by using on-premises data. You want to use Vertex Al to deploy the model to production Due to security concerns you cannot move your data to the cloud. You are aware that the input data distribution might change over time You need to detect model performance changes in production. What should you do?

Options:

A.

Use Vertex Explainable Al for model explainability Configure feature-based explanations.

B.

Use Vertex Explainable Al for model explainability Configure example-based explanations.

C.

Create a Vertex Al Model Monitoring job. Enable training-serving skew detection for your model.

D.

Create a Vertex Al Model Monitoring job. Enable feature attribution skew and dnft detection for your model.

Buy Now
Questions 5

You are creating a social media app where pet owners can post images of their pets. You have one million user uploaded images with hashtags. You want to build a comprehensive system that recommends images to users that are similar in appearance to their own uploaded images.

What should you do?

Options:

A.

Download a pretrained convolutional neural network, and fine-tune the model to predict hashtags based on the input images. Use the predicted hashtags to make recommendations.

B.

Retrieve image labels and dominant colors from the input images using the Vision API. Use these properties and the hashtags to make recommendations.

C.

Use the provided hashtags to create a collaborative filtering algorithm to make recommendations.

D.

Download a pretrained convolutional neural network, and use the model to generate embeddings of the input images. Measure similarity between embeddings to make recommendations.

Buy Now
Questions 6

While performing exploratory data analysis on a dataset, you find that an important categorical feature has 5% null values. You want to minimize the bias that could result from the missing values. How should you handle the missing values?

Options:

A.

Remove the rows with missing values, and upsample your dataset by 5%.

B.

Replace the missing values with the feature’s mean.

C.

Replace the missing values with a placeholder category indicating a missing value.

D.

Move the rows with missing values to your validation dataset.

Buy Now
Questions 7

During batch training of a neural network, you notice that there is an oscillation in the loss. How should you adjust your model to ensure that it converges?

Options:

A.

Increase the size of the training batch

B.

Decrease the size of the training batch

C.

Increase the learning rate hyperparameter

D.

Decrease the learning rate hyperparameter

Buy Now
Questions 8

You are implementing a batch inference ML pipeline in Google Cloud. The model was developed using TensorFlow and is stored in SavedModel format in Cloud Storage You need to apply the model to a historical dataset containing 10 TB of data that is stored in a BigQuery table How should you perform the inference?

Options:

A.

Export the historical data to Cloud Storage in Avro format. Configure a Vertex Al batch prediction job to generate predictions for the exported data.

B.

Import the TensorFlow model by using the create model statement in BigQuery ML Apply the historical data to the TensorFlow model.

C.

Export the historical data to Cloud Storage in CSV format Configure a Vertex Al batch prediction job to generate predictions for the exported data.

D.

Configure a Vertex Al batch prediction job to apply the model to the historical data in BigQuery

Buy Now
Questions 9

You trained a text classification model. You have the following SignatureDefs:

Professional-Machine-Learning-Engineer Question 9

What is the correct way to write the predict request?

Options:

A.

data = json.dumps({"signature_name": "serving_default'\ "instances": [fab', 'be1, 'cd']]})

B.

data = json dumps({"signature_name": "serving_default"! "instances": [['a', 'b', "c", 'd', 'e', 'f']]})

C.

data = json.dumps({"signature_name": "serving_default, "instances": [['a', 'b\ 'c'1, [d\ 'e\ T]]})

D.

data = json dumps({"signature_name": f,serving_default", "instances": [['a', 'b'], [c\ 'd'], ['e\ T]]})

Buy Now
Questions 10

You work for a company that provides an anti-spam service that flags and hides spam posts on social media platforms. Your company currently uses a list of 200,000 keywords to identify suspected spam posts. If a post contains more than a few of these keywords, the post is identified as spam. You want to start using machine learning to flag spam posts for human review. What is the main advantage of implementing machine learning for this business case?

Options:

A.

Posts can be compared to the keyword list much more quickly.

B.

New problematic phrases can be identified in spam posts.

C.

A much longer keyword list can be used to flag spam posts.

D.

Spam posts can be flagged using far fewer keywords.

Buy Now
Questions 11

You are training a Resnet model on Al Platform using TPUs to visually categorize types of defects in automobile engines. You capture the training profile using the Cloud TPU profiler plugin and observe that it is highly input-bound. You want to reduce the bottleneck and speed up your model training process. Which modifications should you make to the tf .data dataset?

Choose 2 answers

Options:

A.

Use the interleave option for reading data

B.

Reduce the value of the repeat parameter

C.

Increase the buffer size for the shuffle option.

D.

Set the prefetch option equal to the training batch size

E.

Decrease the batch size argument in your transformation

Buy Now
Questions 12

You are developing an ML model intended to classify whether X-Ray images indicate bone fracture risk. You have trained on Api Resnet architecture on Vertex AI using a TPU as an accelerator, however you are unsatisfied with the trainning time and use memory usage. You want to quickly iterate your training code but make minimal changes to the code. You also want to minimize impact on the models accuracy. What should you do?

Options:

A.

Configure your model to use bfloat16 instead float32

B.

Reduce the global batch size from 1024 to 256

C.

Reduce the number of layers in the model architecture

D.

Reduce the dimensions of the images used un the model

Buy Now
Questions 13

You need to build an ML model for a social media application to predict whether a user’s submitted profile photo meets the requirements. The application will inform the user if the picture meets the requirements. How should you build a model to ensure that the application does not falsely accept a non-compliant picture?

Options:

A.

Use AutoML to optimize the model’s recall in order to minimize false negatives.

B.

Use AutoML to optimize the model’s F1 score in order to balance the accuracy of false positives and false negatives.

C.

Use Vertex AI Workbench user-managed notebooks to build a custom model that has three times as many examples of pictures that meet the profile photo requirements.

D.

Use Vertex AI Workbench user-managed notebooks to build a custom model that has three times as many examples of pictures that do not meet the profile photo requirements.

Buy Now
Questions 14

You are developing a model to identify traffic signs in images extracted from videos taken from the dashboard of a vehicle. You have a dataset of 100 000 images that were cropped to show one out of ten different traffic signs. The images have been labeled accordingly for model training and are stored in a Cloud Storage bucket You need to be able to tune the model during each training run. How should you train the model?

Options:

A.

Train a model for object detection by using Vertex Al AutoML.

B.

Train a model for image classification by using Vertex Al AutoML.

C.

Develop the model training code for object detection and tram a model by using Vertex Al custom training.

D.

Develop the model training code for image classification and train a model by using Vertex Al custom training.

Buy Now
Questions 15

You received a training-serving skew alert from a Vertex Al Model Monitoring job running in production. You retrained the model with more recent training data, and deployed it back to the Vertex Al endpoint but you are still receiving the same alert. What should you do?

Options:

A.

Update the model monitoring job to use a lower sampling rate.

B.

Update the model monitoring job to use the more recent training data that was used to retrain the model.

C.

Temporarily disable the alert Enable the alert again after a sufficient amount of new production traffic has passed through the Vertex Al endpoint.

D.

Temporarily disable the alert until the model can be retrained again on newer training data Retrain the model again after a sufficient amount of new production traffic has passed through the Vertex Al endpoint

Buy Now
Questions 16

You trained a model, packaged it with a custom Docker container for serving, and deployed it to Vertex Al Model Registry. When you submit a batch prediction job, it fails with this error "Error model server never became ready Please validate that your model file or container configuration are valid. There are no additional errors in the logs What should you do?

Options:

A.

Add a logging configuration to your application to emit logs to Cloud Logging.

B.

Change the HTTP port in your model's configuration to the default value of 8080

C.

Change the health Route value in your models configuration to /heal thcheck.

D.

Pull the Docker image locally and use the decker run command to launch it locally. Use the docker logs command to explore the error logs.

Buy Now
Questions 17

You are building a real-time prediction engine that streams files which may contain Personally Identifiable Information (Pll) to Google Cloud. You want to use the Cloud Data Loss Prevention (DLP) API to scan the files. How should you ensure that the Pll is not accessible by unauthorized individuals?

Options:

A.

Stream all files to Google CloudT and then write the data to BigQuery Periodically conduct a bulk scan of the table using the DLP API.

B.

Stream all files to Google Cloud, and write batches of the data to BigQuery While the data is being written to BigQuery conduct a bulk scan of the data using the DLP API.

C.

Create two buckets of data Sensitive and Non-sensitive Write all data to the Non-sensitive bucket Periodically conduct a bulk scan of that bucket using the DLP API, and move the sensitive data to the Sensitive bucket

D.

Create three buckets of data: Quarantine, Sensitive, and Non-sensitive Write all data to the Quarantine bucket.

E.

Periodically conduct a bulk scan of that bucket using the DLP API, and move the data to either the Sensitive or Non-Sensitive bucket

Buy Now
Questions 18

Your company needs to generate product summaries for vendors. You evaluated a foundation model from Model Garden for text summarization but found that the summaries do not align with your company's brand voice. How should you improve this LLM-based summarization model to better meet your business objectives?

Options:

A.

Increase the model’s temperature parameter.

B.

Fine-tune the model using a company-specific dataset.

C.

Tune the token output limit in the response.

D.

Replace the pre-trained model with another model in Model Garden.

Buy Now
Questions 19

You work for a company that sells corporate electronic products to thousands of businesses worldwide. Your company stores historical customer data in BigQuery. You need to build a model that predicts customer lifetime value over the next three years. You want to use the simplest approach to build the model. What should you do?

Options:

A.

Access BigQuery Studio in the Google Cloud console. Run the create model statement in the SQL editor to create an ARIMA model.

B.

Create a Vertex Al Workbench notebook. Use IPython magic to run the create model statement to create an ARIMA model.

C.

Access BigQuery Studio in the Google Cloud console. Run the create model statement in the SQL editor to create an AutoML regression model.

D.

Create a Vertex Al Workbench notebook. Use IPython magic to run the create model statement to create an AutoML regression model.

Buy Now
Questions 20

You recently trained a XGBoost model that you plan to deploy to production for online inference Before sending a predict request to your model's binary you need to perform a simple data preprocessing step This step exposes a REST API that accepts requests in your internal VPC Service Controls and returns predictions You want to configure this preprocessing step while minimizing cost and effort What should you do?

Options:

A.

Store a pickled model in Cloud Storage Build a Flask-based app packages the app in a custom container image, and deploy the model to Vertex Al Endpoints.

B.

Build a Flask-based app. package the app and a pickled model in a custom container image, and deploy the model to Vertex Al Endpoints.

C.

Build a custom predictor class based on XGBoost Predictor from the Vertex Al SDK. package it and a pickled model in a custom container image based on a Vertex built-in image, and deploy the model to Vertex Al Endpoints.

D.

Build a custom predictor class based on XGBoost Predictor from the Vertex Al SDK and package the handler in a custom container image based on a Vertex built-in container image Store a pickled model in Cloud Storage and deploy the model to Vertex Al Endpoints.

Buy Now
Questions 21

You developed a custom model by using Vertex Al to forecast the sales of your company s products based on historical transactional data You anticipate changes in the feature distributions and the correlations between the features in the near future You also expect to receive a large volume of prediction requests You plan to use Vertex Al Model Monitoring for drift detection and you want to minimize the cost. What should you do?

Options:

A.

Use the features for monitoring Set a monitoring- frequency value that is higher than the default.

B.

Use the features for monitoring Set a prediction-sampling-rare value that is closer to 1 than 0.

C.

Use the features and the feature attributions for monitoring. Set a monitoring-frequency value that is lower than the default.

D.

Use the features and the feature attributions for monitoring Set a prediction-sampling-rate value that is closer to 0 than 1.

Buy Now
Questions 22

You are collaborating on a model prototype with your team. You need to create a Vertex Al Workbench environment for the members of your team and also limit access to other employees in your project. What should you do?

Options:

A.

1. Create a new service account and grant it the Notebook Viewer role.

2 Grant the Service Account User role to each team member on the service account.

3 Grant the Vertex Al User role to each team member.

4. Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

B.

1. Grant the Vertex Al User role to the default Compute Engine service account.

2. Grant the Service Account User role to each team member on the default Compute Engine service account.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the default Compute Engine service account.

C.

1 Create a new service account and grant it the Vertex Al User role.

2 Grant the Service Account User role to each team member on the service account.

3. Grant the Notebook Viewer role to each team member.

4 Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

D.

1 Grant the Vertex Al User role to the primary team member.

2. Grant the Notebook Viewer role to the other team members.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the primary user’s account.

Buy Now
Questions 23

You are an ML engineer at a mobile gaming company. A data scientist on your team recently trained a TensorFlow model, and you are responsible for deploying this model into a mobile application. You discover that the inference latency of the current model doesn’t meet production requirements. You need to reduce the inference time by 50%, and you are willing to accept a small decrease in model accuracy in order to reach the latency requirement. Without training a new model, which model optimization technique for reducing latency should you try first?

Options:

A.

Weight pruning

B.

Dynamic range quantization

C.

Model distillation

D.

Dimensionality reduction

Buy Now
Questions 24

You work for a retail company. You have a managed tabular dataset in Vertex Al that contains sales data from three different stores. The dataset includes several features such as store name and sale timestamp. You want to use the data to train a model that makes sales predictions for a new store that will open soon You need to split the data between the training, validation, and test sets What approach should you use to split the data?

Options:

A.

Use Vertex Al manual split, using the store name feature to assign one store for each set.

B.

Use Vertex Al default data split.

C.

Use Vertex Al chronological split and specify the sales timestamp feature as the time vanable.

D.

Use Vertex Al random split assigning 70% of the rows to the training set, 10% to the validation set, and 20% to the test set.

Buy Now
Questions 25

You have trained a deep neural network model on Google Cloud. The model has low loss on the training data, but is performing worse on the validation data. You want the model to be resilient to overfitting. Which strategy should you use when retraining the model?

Options:

A.

Apply a dropout parameter of 0 2, and decrease the learning rate by a factor of 10

B.

Apply a L2 regularization parameter of 0.4, and decrease the learning rate by a factor of 10.

C.

Run a hyperparameter tuning job on Al Platform to optimize for the L2 regularization and dropout parameters

D.

Run a hyperparameter tuning job on Al Platform to optimize for the learning rate, and increase the number of neurons by a factor of 2.

Buy Now
Questions 26

You are building a predictive maintenance model to preemptively detect part defects in bridges. You plan to use high definition images of the bridges as model inputs. You need to explain the output of the model to the relevant stakeholders so they can take appropriate action. How should you build the model?

Options:

A.

Use scikit-learn to build a tree-based model, and use SHAP values to explain the model output.

B.

Use scikit-lean to build a tree-based model, and use partial dependence plots (PDP) to explain the model output.

C.

Use TensorFlow to create a deep learning-based model and use Integrated Gradients to explain the model

output.

D.

Use TensorFlow to create a deep learning-based model and use the sampled Shapley method to explain the model output.

Buy Now
Questions 27

You work at an ecommerce startup. You need to create a customer churn prediction model Your company's recent sales records are stored in a BigQuery table You want to understand how your initial model is making predictions. You also want to iterate on the model as quickly as possible while minimizing cost How should you build your first model?

Options:

A.

Export the data to a Cloud Storage Bucket Load the data into a pandas DataFrame on Vertex Al Workbench and train a logistic regression model with scikit-learn.

B.

Create a tf.data.Dataset by using the TensorFlow BigQueryChent Implement a deep neural network in TensorFlow.

C.

Prepare the data in BigQuery and associate the data with a Vertex Al dataset Create an

AutoMLTabuiarTrainmgJob to train a classification model.

D.

Export the data to a Cloud Storage Bucket Create tf. data. Dataset to read the data from Cloud Storage Implement a deep neural network in TensorFlow.

Buy Now
Questions 28

Your team is building a convolutional neural network (CNN)-based architecture from scratch. The preliminary experiments running on your on-premises CPU-only infrastructure were encouraging, but have slow convergence. You have been asked to speed up model training to reduce time-to-market. You want to experiment with virtual machines (VMs) on Google Cloud to leverage more powerful hardware. Your code does not include any manual device placement and has not been wrapped in Estimator model-level abstraction. Which environment should you train your model on?

Options:

A.

AVM on Compute Engine and 1 TPU with all dependencies installed manually.

B.

AVM on Compute Engine and 8 GPUs with all dependencies installed manually.

C.

A Deep Learning VM with an n1-standard-2 machine and 1 GPU with all libraries pre-installed.

D.

A Deep Learning VM with more powerful CPU e2-highcpu-16 machines with all libraries pre-installed.

Buy Now
Questions 29

You work at a subscription-based company. You have trained an ensemble of trees and neural networks to predict customer churn, which is the likelihood that customers will not renew their yearly subscription. The average prediction is a 15% churn rate, but for a particular customer the model predicts that they are 70% likely to churn. The customer has a product usage history of 30%, is located in New York City, and became a customer in 1997. You need to explain the difference between the actual prediction, a 70% churn rate, and the average prediction. You want to use Vertex Explainable AI. What should you do?

Options:

A.

Train local surrogate models to explain individual predictions.

B.

Configure sampled Shapley explanations on Vertex Explainable AI.

C.

Configure integrated gradients explanations on Vertex Explainable AI.

D.

Measure the effect of each feature as the weight of the feature multiplied by the feature value.

Buy Now
Questions 30

You work for a company that is developing an application to help users with meal planning You want to use machine learning to scan a corpus of recipes and extract each ingredient (e g carrot, rice pasta) and each kitchen cookware (e.g. bowl, pot spoon) mentioned Each recipe is saved in an unstructured text file What should you do?

Options:

A.

Create a text dataset on Vertex Al for entity extraction Create two entities called ingredient" and cookware" and label at least 200 examples of each entity Train an AutoML entity extraction model to extract occurrences of these entity types Evaluate performance on a holdout dataset.

B.

Create a multi-label text classification dataset on Vertex Al Create a test dataset and label each recipe that corresponds to its ingredients and cookware Train a multi-class classification model Evaluate the model’s performance on a holdout dataset.

C.

Use the Entity Analysis method of the Natural Language API to extract the ingredients and cookware from each recipe Evaluate the model's performance on a prelabeled dataset.

D.

Create a text dataset on Vertex Al for entity extraction Create as many entities as there are different ingredients and cookware Train an AutoML entity extraction model to extract those entities Evaluate the models performance on a holdout dataset.

Buy Now
Questions 31

You are developing an ML model to identify your company s products in images. You have access to over one million images in a Cloud Storage bucket. You plan to experiment with different TensorFlow models by using Vertex Al Training You need to read images at scale during training while minimizing data I/O bottlenecks What should you do?

Options:

A.

Load the images directly into the Vertex Al compute nodes by using Cloud Storage FUSE Read the images by using the tf .data.Dataset.from_tensor_slices function.

B.

Create a Vertex Al managed dataset from your image data Access the aip_training_data_uri

environment variable to read the images by using the tf. data. Dataset. Iist_flies function.

C.

Convert the images to TFRecords and store them in a Cloud Storage bucket Read the TFRecords by using the tf. ciata.TFRecordDataset function.

D.

Store the URLs of the images in a CSV file Read the file by using the tf.data.experomental.CsvDataset function.

Buy Now
Questions 32

You work for a toy manufacturer that has been experiencing a large increase in demand. You need to build an ML model to reduce the amount of time spent by quality control inspectors checking for product defects. Faster defect detection is a priority. The factory does not have reliable Wi-Fi. Your company wants to implement the new ML model as soon as possible. Which model should you use?

Options:

A.

AutoML Vision model

B.

AutoML Vision Edge mobile-versatile-1 model

C.

AutoML Vision Edge mobile-low-latency-1 model

D.

AutoML Vision Edge mobile-high-accuracy-1 model

Buy Now
Questions 33

You have trained a text classification model in TensorFlow using Al Platform. You want to use the trained model for batch predictions on text data stored in BigQuery while minimizing computational overhead. What should you do?

Options:

A.

Export the model to BigQuery ML.

B.

Deploy and version the model on Al Platform.

C.

Use Dataflow with the SavedModel to read the data from BigQuery

D.

Submit a batch prediction job on Al Platform that points to the model location in Cloud Storage.

Buy Now
Questions 34

You developed a Vertex Al pipeline that trains a classification model on data stored in a large BigQuery table. The pipeline has four steps, where each step is created by a Python function that uses the KubeFlow v2 API The components have the following names:

You launch your Vertex Al pipeline as the following:

You perform many model iterations by adjusting the code and parameters of the training step. You observe high costs associated with the development, particularly the data export and preprocessing steps. You need to reduce model development costs. What should you do?

Options:

A.
B.
C.
D.
Buy Now
Questions 35

You work on the data science team at a manufacturing company. You are reviewing the company's historical sales data, which has hundreds of millions of records. For your exploratory data analysis, you need to calculate descriptive statistics such as mean, median, and mode; conduct complex statistical tests for hypothesis testing; and plot variations of the features over time You want to use as much of the sales data as possible in your analyses while minimizing computational resources. What should you do?

Options:

A.

Spin up a Vertex Al Workbench user-managed notebooks instance and import the dataset Use this data to create statistical and visual analyses

B.

Visualize the time plots in Google Data Studio. Import the dataset into Vertex Al Workbench user-managed notebooks Use this data to calculate the descriptive statistics and run the statistical analyses

C.

Use BigQuery to calculate the descriptive statistics. Use Vertex Al Workbench user-managed notebooks to visualize the time plots and run the statistical analyses.

D Use BigQuery to calculate the descriptive statistics, and use Google Data Studio to visualize the time plots. Use Vertex Al Workbench user-managed notebooks to run the statistical analyses.

Buy Now
Questions 36

You are building an ML model to detect anomalies in real-time sensor data. You will use Pub/Sub to handle incoming requests. You want to store the results for analytics and visualization. How should you configure the pipeline?

Options:

A.

1 = Dataflow, 2 - Al Platform, 3 = BigQuery

B.

1 = DataProc, 2 = AutoML, 3 = Cloud Bigtable

C.

1 = BigQuery, 2 = AutoML, 3 = Cloud Functions

D.

1 = BigQuery, 2 = Al Platform, 3 = Cloud Storage

Buy Now
Questions 37

You want to migrate a scikrt-learn classifier model to TensorFlow. You plan to train the TensorFlow classifier model using the same training set that was used to train the scikit-learn model and then compare the performances using a common test set. You want to use the Vertex Al Python SDK to manually log the evaluation metrics of each model and compare them based on their F1 scores and confusion matrices. How should you log the metrics?

Options:

A.

Professional-Machine-Learning-Engineer Question 37 Option 1

B.

37

C.

37

D.

37

Buy Now
Questions 38

You are an ML engineer at a bank. You have developed a binary classification model using AutoML Tables to predict whether a customer will make loan payments on time. The output is used to approve or reject loan requests. One customer’s loan request has been rejected by your model, and the bank’s risks department is asking you to provide the reasons that contributed to the model’s decision. What should you do?

Options:

A.

Use local feature importance from the predictions.

B.

Use the correlation with target values in the data summary page.

C.

Use the feature importance percentages in the model evaluation page.

D.

Vary features independently to identify the threshold per feature that changes the classification.

Buy Now
Questions 39

You are building an ML model to predict trends in the stock market based on a wide range of factors. While exploring the data, you notice that some features have a large range. You want to ensure that the features with the largest magnitude don’t overfit the model. What should you do?

Options:

A.

Standardize the data by transforming it with a logarithmic function.

B.

Apply a principal component analysis (PCA) to minimize the effect of any particular feature.

C.

Use a binning strategy to replace the magnitude of each feature with the appropriate bin number.

D.

Normalize the data by scaling it to have values between 0 and 1.

Buy Now
Questions 40

You work for a credit card company and have been asked to create a custom fraud detection model based on historical data using AutoML Tables. You need to prioritize detection of fraudulent transactions while minimizing false positives. Which optimization objective should you use when training the model?

Options:

A.

An optimization objective that minimizes Log loss

B.

An optimization objective that maximizes the Precision at a Recall value of 0.50

C.

An optimization objective that maximizes the area under the precision-recall curve (AUC PR) value

D.

An optimization objective that maximizes the area under the receiver operating characteristic curve (AUC ROC) value

Buy Now
Questions 41

You are training and deploying updated versions of a regression model with tabular data by using Vertex Al Pipelines. Vertex Al Training Vertex Al Experiments and Vertex Al Endpoints. The model is deployed in a Vertex Al endpoint and your users call the model by using the Vertex Al endpoint. You want to receive an email when the feature data distribution changes significantly, so you can retrigger the training pipeline and deploy an updated version of your model What should you do?

Options:

A.

Use Vertex Al Model Monitoring Enable prediction drift monitoring on the endpoint. and specify a notification email.

B.

In Cloud Logging, create a logs-based alert using the logs in the Vertex Al endpoint. Configure Cloud Logging to send an email when the alert is triggered.

C.

In Cloud Monitoring create a logs-based metric and a threshold alert for the metric. Configure Cloud Monitoring to send an email when the alert is triggered.

D.

Export the container logs of the endpoint to BigQuery Create a Cloud Function to run a SQL query over the exported logs and send an email. Use Cloud Scheduler to trigger the Cloud Function.

Buy Now
Questions 42

You have been tasked with deploying prototype code to production. The feature engineering code is in PySpark and runs on Dataproc Serverless. The model training is executed by using a Vertex Al custom training job. The two steps are not connected, and the model training must currently be run manually after the feature engineering step finishes. You need to create a scalable and maintainable production process that runs end-to-end and tracks the connections between steps. What should you do?

Options:

A.

Create a Vertex Al Workbench notebook Use the notebook to submit the Dataproc Serverless feature engineering job Use the same notebook to submit the custom model training job Run the notebook cells sequentially to tie the steps together end-to-end

B.

Create a Vertex Al Workbench notebook Initiate an Apache Spark context in the notebook, and run the PySpark feature engineering code Use the same notebook to run the custom model training job in TensorFlow Run the notebook cells sequentially to tie the steps together end-to-end

C.

Use the Kubeflow pipelines SDK to write code that specifies two components

- The first is a Dataproc Serverless component that launches the feature engineering job

- The second is a custom component wrapped in the

creare_cusrora_rraining_job_from_ccraponent Utility that launches the custom model training

job.

D.

Create a Vertex Al Pipelines job to link and run both components Use the Kubeflow pipelines SDK to write code that specifies two components

- The first component initiates an Apache Spark context that runs the PySpark feature engineering code

- The second component runs the TensorFlow custom model training code Create a Vertex Al Pipelines job to link and run both components

Buy Now
Questions 43

You recently used XGBoost to train a model in Python that will be used for online serving Your model prediction service will be called by a backend service implemented in Golang running on a Google Kubemetes Engine (GKE) cluster Your model requires pre and postprocessing steps You need to implement the processing steps so that they run at serving time You want to minimize code changes and infrastructure maintenance and deploy your model into production as quickly as possible. What should you do?

Options:

A.

Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server and deploy it on your organization's GKE cluster.

B.

Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server Upload the image to Vertex Al Model Registry and deploy it to a Vertex Al endpoint.

C.

Use the Predictor interface to implement a custom prediction routine Build the custom contain upload the container to Vertex Al Model Registry, and deploy it to a Vertex Al endpoint.

D.

Use the XGBoost prebuilt serving container when importing the trained model into Vertex Al Deploy the model to a Vertex Al endpoint Work with the backend engineers to implement the pre- and postprocessing steps in the Golang backend service.

Buy Now
Questions 44

You are designing an architecture with a serverless ML system to enrich customer support tickets with informative metadata before they are routed to a support agent. You need a set of models to predict ticket priority, predict ticket resolution time, and perform sentiment analysis to help agents make strategic decisions when they process support requests. Tickets are not expected to have any domain-specific terms or jargon.

The proposed architecture has the following flow:

Professional-Machine-Learning-Engineer Question 44

Which endpoints should the Enrichment Cloud Functions call?

Options:

A.

1 = Vertex Al. 2 = Vertex Al. 3 = AutoML Natural Language

B.

1 = Vertex Al. 2 = Vertex Al. 3 = Cloud Natural Language API

C.

1 = Vertex Al. 2 = Vertex Al. 3 = AutoML Vision

D.

1 = Cloud Natural Language API. 2 = Vertex Al, 3 = Cloud Vision API

Buy Now
Questions 45

You are an ML engineer at a regulated insurance company. You are asked to develop an insurance approval model that accepts or rejects insurance applications from potential customers. What factors should you consider before building the model?

Options:

A.

Redaction, reproducibility, and explainability

B.

Traceability, reproducibility, and explainability

C.

Federated learning, reproducibility, and explainability

D.

Differential privacy federated learning, and explainability

Buy Now
Questions 46

You work for a large technology company that wants to modernize their contact center. You have been asked to develop a solution to classify incoming calls by product so that requests can be more quickly routed to the correct support team. You have already transcribed the calls using the Speech-to-Text API. You want to minimize data preprocessing and development time. How should you build the model?

Options:

A.

Use the Al Platform Training built-in algorithms to create a custom model

B.

Use AutoML Natural Language to extract custom entities for classification

C.

Use the Cloud Natural Language API to extract custom entities for classification

D.

Build a custom model to identify the product keywords from the transcribed calls, and then run the keywords through a classification algorithm

Buy Now
Questions 47

You are an ML engineer at an ecommerce company and have been tasked with building a model that predicts how much inventory the logistics team should order each month. Which approach should you take?

Options:

A.

Use a clustering algorithm to group popular items together. Give the list to the logistics team so they can increase inventory of the popular items.

B.

Use a regression model to predict how much additional inventory should be purchased each month. Give the results to the logistics team at the beginning of the month so they can increase inventory by the amount predicted by the model.

C.

Use a time series forecasting model to predict each item's monthly sales. Give the results to the logistics team so they can base inventory on the amount predicted by the model.

D.

Use a classification model to classify inventory levels as UNDER_STOCKED, OVER_STOCKED, and CORRECTLY_STOCKED. Give the report to the logistics team each month so they can fine-tune inventory levels.

Buy Now
Questions 48

You work as an ML engineer at a social media company, and you are developing a visual filter for users’ profile photos. This requires you to train an ML model to detect bounding boxes around human faces. You want to use this filter in your company’s iOS-based mobile phone application. You want to minimize code development and want the model to be optimized for inference on mobile phones. What should you do?

Options:

A.

Train a model using AutoML Vision and use the “export for Core ML” option.

B.

Train a model using AutoML Vision and use the “export for Coral” option.

C.

Train a model using AutoML Vision and use the “export for TensorFlow.js” option.

D.

Train a custom TensorFlow model and convert it to TensorFlow Lite (TFLite).

Buy Now
Questions 49

You are building a TensorFlow model for a financial institution that predicts the impact of consumer spending on inflation globally. Due to the size and nature of the data, your model is long-running across all types of hardware, and you have built frequent checkpointing into the training process. Your organization has asked you to minimize cost. What hardware should you choose?

Options:

A.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with 4 NVIDIA P100 GPUs

B.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with an NVIDIA P100 GPU

C.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with a non-preemptible v3-8 TPU

D.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with a preemptible v3-8 TPU

Buy Now
Questions 50

You work for an online retailer. Your company has a few thousand short lifecycle products. Your company has five years of sales data stored in BigQuery. You have been asked to build a model that will make monthly sales predictions for each product. You want to use a solution that can be implemented quickly with minimal effort. What should you do?

Options:

A.

Use Prophet on Vertex Al Training to build a custom model.

B.

Use Vertex Al Forecast to build a NN-based model.

C.

Use BigQuery ML to build a statistical AR1MA_PLUS model.

D.

Use TensorFlow on Vertex Al Training to build a custom model.

Buy Now
Questions 51

You have created multiple versions of an ML model and have imported them to Vertex AI Model Registry. You want to perform A/B testing to identify the best-performing model using the simplest approach. What should you do?

Options:

A.

Split incoming traffic among separate Cloud Run instances of deployed models. Monitor the performance of each version using Cloud Monitoring.

B.

Split incoming traffic to distribute prediction requests among the versions. Monitor the performance of each version using Looker Studio dashboards that compare logged data for each version.

C.

Split incoming traffic among Google Kubernetes Engine (GKE) clusters and use Traffic Director to distribute prediction requests to different versions. Monitor the performance of each version using Cloud Monitoring.

D.

Split incoming traffic to distribute prediction requests among the versions. Monitor the performance of each version using Vertex AI’s built-in monitoring tools.

Buy Now
Questions 52

You recently deployed a model lo a Vertex Al endpoint and set up online serving in Vertex Al Feature Store. You have configured a daily batch ingestion job to update your featurestore During the batch ingestion jobs you discover that CPU utilization is high in your featurestores online serving nodes and that feature retrieval latency is high. You need to improve online serving performance during the daily batch ingestion. What should you do?

Options:

A.

Schedule an increase in the number of online serving nodes in your featurestore prior to the batch ingestion jobs.

B.

Enable autoscaling of the online serving nodes in your featurestore

C.

Enable autoscaling for the prediction nodes of your DeployedModel in the Vertex Al endpoint.

D.

Increase the worker counts in the importFeaturevalues request of your batch ingestion job.

Buy Now
Questions 53

You are an AI architect at a popular photo-sharing social media platform. Your organization’s content moderation team currently scans images uploaded by users and removes explicit images manually. You want to implement an AI service to automatically prevent users from uploading explicit images. What should you do?

Options:

A.

Develop a custom TensorFlow model in a Vertex AI Workbench instance. Train the model on a dataset of manually labeled images. Deploy the model to a Vertex AI endpoint. Run periodic batch inference to identify inappropriate uploads and report them to the content moderation team.

B.

Train an image clustering model using TensorFlow in a Vertex AI Workbench instance. Deploy this model to a Vertex AI endpoint and configure it for online inference. Run this model each time a new image is uploaded to identify and block inappropriate uploads.

C.

Create a dataset using manually labeled images. Ingest this dataset into AutoML. Train an image classification model and deploy it to a Vertex AI endpoint. Integrate this endpoint with the image upload process to identify and block inappropriate uploads. Monitor predictions and periodically retrain the model.

D.

Send a copy of every user-uploaded image to a Cloud Storage bucket. Configure a Cloud Run function that triggers the Cloud Vision API to detect explicit content each time a new image is uploaded. Report the classifications to the content moderation team for review.

Buy Now
Questions 54

You are working on a system log anomaly detection model for a cybersecurity organization. You have developed the model using TensorFlow, and you plan to use it for real-time prediction. You need to create a Dataflow pipeline to ingest data via Pub/Sub and write the results to BigQuery. You want to minimize the serving latency as much as possible. What should you do?

Options:

A.

Containerize the model prediction logic in Cloud Run, which is invoked by Dataflow.

B.

Load the model directly into the Dataflow job as a dependency, and use it for prediction.

C.

Deploy the model to a Vertex AI endpoint, and invoke this endpoint in the Dataflow job.

D.

Deploy the model in a TFServing container on Google Kubernetes Engine, and invoke it in the Dataflow job.

Buy Now
Questions 55

You work for a large social network service provider whose users post articles and discuss news. Millions of comments are posted online each day, and more than 200 human moderators constantly review comments and flag those that are inappropriate. Your team is building an ML model to help human moderators check content on the platform. The model scores each comment and flags suspicious comments to be reviewed by a human. Which metric(s) should you use to monitor the model’s performance?

Options:

A.

Number of messages flagged by the model per minute

B.

Number of messages flagged by the model per minute confirmed as being inappropriate by humans.

C.

Precision and recall estimates based on a random sample of 0.1% of raw messages each minute sent to a human for review

D.

Precision and recall estimates based on a sample of messages flagged by the model as potentially inappropriate each minute

Buy Now
Questions 56

Your task is classify if a company logo is present on an image. You found out that 96% of a data does not include a logo. You are dealing with data imbalance problem. Which metric do you use to evaluate to model?

Options:

A.

F1 Score

B.

RMSE

C.

F Score with higher precision weighting than recall

D.

F Score with higher recall weighted than precision

Buy Now
Questions 57

You work at a leading healthcare firm developing state-of-the-art algorithms for various use cases You have unstructured textual data with custom labels You need to extract and classify various medical phrases with these labels What should you do?

Options:

A.

Use the Healthcare Natural Language API to extract medical entities.

B.

Use a BERT-based model to fine-tune a medical entity extraction model.

C.

Use AutoML Entity Extraction to train a medical entity extraction model.

D.

Use TensorFlow to build a custom medical entity extraction model.

Buy Now
Questions 58

You work on a growing team of more than 50 data scientists who all use Al Platform. You are designing a strategy to organize your jobs, models, and versions in a clean and scalable way. Which strategy should you choose?

Options:

A.

Set up restrictive I AM permissions on the Al Platform notebooks so that only a single user or group can access a given instance.

B.

Separate each data scientist's work into a different project to ensure that the jobs, models, and versions created by each data scientist are accessible only to that user.

C.

Use labels to organize resources into descriptive categories. Apply a label to each created resource so that users can filter the results by label when viewing or monitoring the resources

D.

Set up a BigQuery sink for Cloud Logging logs that is appropriately filtered to capture information about Al Platform resource usage In BigQuery create a SQL view that maps users to the resources they are using.

Buy Now
Questions 59

You work on a growing team of more than 50 data scientists who all use AI Platform. You are designing a strategy to organize your jobs, models, and versions in a clean and scalable way. Which strategy should you choose?

Options:

A.

Set up restrictive IAM permissions on the AI Platform notebooks so that only a single user or group can access a given instance.

B.

Separate each data scientist’s work into a different project to ensure that the jobs, models, and versions created by each data scientist are accessible only to that user.

C.

Use labels to organize resources into descriptive categories. Apply a label to each created resource so that users can filter the results by label when viewing or monitoring the resources.

D.

Set up a BigQuery sink for Cloud Logging logs that is appropriately filtered to capture information about AI Platform resource usage. In BigQuery, create a SQL view that maps users to the resources they are using

Buy Now
Questions 60

You are developing an ML model that predicts the cost of used automobiles based on data such as location, condition model type color, and engine-'battery efficiency. The data is updated every night Car dealerships will use the model to determine appropriate car prices. You created a Vertex Al pipeline that reads the data splits the data into training/evaluation/test sets performs feature engineering trains the model by using the training dataset and validates the model by using the evaluation dataset. You need to configure a retraining workflow that minimizes cost What should you do?

Options:

A.

Compare the training and evaluation losses of the current run If the losses are similar, deploy the model to a Vertex AI endpoint Configure a cron job to redeploy the pipeline every night.

B.

Compare the training and evaluation losses of the current run If the losses are similar deploy the model to a Vertex Al endpoint with training/serving skew threshold model monitoring When the model monitoring threshold is tnggered redeploy the pipeline.

C.

Compare the results to the evaluation results from a previous run If the performance improved deploy the model to a Vertex Al endpoint Configure a cron job to redeploy the pipeline every night.

D.

Compare the results to the evaluation results from a previous run If the performance improved deploy the model to a Vertex Al endpoint with training/serving skew threshold model monitoring. When the model monitoring threshold is triggered, redeploy the pipeline.

Buy Now
Questions 61

You developed a BigQuery ML linear regressor model by using a training dataset stored in a BigQuery table. New data is added to the table every minute. You are using Cloud Scheduler and Vertex Al Pipelines to automate hourly model training, and use the model for direct inference. The feature preprocessing logic includes quantile bucketization and MinMax scaling on data received in the last hour. You want to minimize storage and computational overhead. What should you do?

Options:

A.

Create a component in the Vertex Al Pipelines directed acyclic graph (DAG) to calculate the required statistics, and pass the statistics on to subsequent components.

B.

Preprocess and stage the data in BigQuery prior to feeding it to the model during training and inference.

C.

Create SQL queries to calculate and store the required statistics in separate BigQuery tables that are referenced in the CREATE MODEL statement.

D.

Use the TRANSFORM clause in the CREATE MODEL statement in the SQL query to calculate the required statistics.

Buy Now
Questions 62

You are developing an image recognition model using PyTorch based on ResNet50 architecture Your code is working fine on your local laptop on a small subsample. Your full dataset has 200k labeled images You want to quickly scale your training workload while minimizing cost. You plan to use 4 V100 GPUs What should you do?

Options:

A.

Create a Google Kubernetes Engine cluster with a node pool that has 4 V100 GPUs Prepare and submit a TFJob operator to this node pool.

B.

Configure a Compute Engine VM with all the dependencies that launches the training Tram your model with Vertex Al using a custom tier that contains the required GPUs.

C.

Create a Vertex Al Workbench user-managed notebooks instance with 4 V100 GPUs, and use it to tram your model.

D.

Package your code with Setuptools and use a pre-built container. Train your model with Vertex Al using a custom tier that contains the required GPUs.

Buy Now
Questions 63

You have trained a model by using data that was preprocessed in a batch Dataflow pipeline Your use case requires real-time inference. You want to ensure that the data preprocessing logic is applied consistently between training and serving. What should you do?

Options:

A.

Perform data validation to ensure that the input data to the pipeline is the same format as the input data to the endpoint.

B.

Refactor the transformation code in the batch data pipeline so that it can be used outside of the pipeline Use the same code in the endpoint.

C.

Refactor the transformation code in the batch data pipeline so that it can be used outside of the pipeline Share this code with the end users of the endpoint.

D.

Batch the real-time requests by using a time window and then use the Dataflow pipeline to preprocess the batched requests. Send the preprocessed requests to the endpoint.

Buy Now
Questions 64

You are developing a training pipeline for a new XGBoost classification model based on tabular data The data is stored in a BigQuery table You need to complete the following steps

1. Randomly split the data into training and evaluation datasets in a 65/35 ratio

2. Conduct feature engineering

3 Obtain metrics for the evaluation dataset.

4 Compare models trained in different pipeline executions

How should you execute these steps'?

Options:

A.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2. Enable auto logging of metrics in the training component.

3 Compare pipeline runs in Vertex Al Experiments

B.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2 Enable autologging of metrics in the training component

3 Compare models using the artifacts lineage in Vertex ML Metadata

C.

1 In BigQuery ML. use the create model statement with bocstzd_tree_classifier as the model

type and use BigQuery to handle the data splits.

2 Use a SQL view to apply feature engineering and train the model using the data in that view

3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_infc statement.

D.

1 In BigQuery ML use the create model statement with boosted_tree_classifier as the model

type, and use BigQuery to handle the data splits.

2 Use ml transform to specify the feature engineering transformations, and train the model using the

data in the table

' 3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_info statement.

Buy Now
Questions 65

You manage a team of data scientists who use a cloud-based backend system to submit training jobs. This system has become very difficult to administer, and you want to use a managed service instead. The data scientists you work with use many different frameworks, including Keras, PyTorch, theano. Scikit-team, and custom libraries. What should you do?

Options:

A.

Use the Al Platform custom containers feature to receive training jobs using any framework

B.

Configure Kubeflow to run on Google Kubernetes Engine and receive training jobs through TFJob

C.

Create a library of VM images on Compute Engine; and publish these images on a centralized repository

D.

Set up Slurm workload manager to receive jobs that can be scheduled to run on your cloud infrastructure.

Buy Now
Questions 66

Your data science team needs to rapidly experiment with various features, model architectures, and hyperparameters. They need to track the accuracy metrics for various experiments and use an API to query the metrics over time. What should they use to track and report their experiments while minimizing manual effort?

Options:

A.

Use Kubeflow Pipelines to execute the experiments Export the metrics file, and query the results using the Kubeflow Pipelines API.

B.

Use Al Platform Training to execute the experiments Write the accuracy metrics to BigQuery, and query the results using the BigQueryAPI.

C.

Use Al Platform Training to execute the experiments Write the accuracy metrics to Cloud Monitoring, and query the results using the Monitoring API.

D.

Use Al Platform Notebooks to execute the experiments. Collect the results in a shared Google Sheets file, and query the results using the Google Sheets API

Buy Now
Questions 67

You are developing a mode! to detect fraudulent credit card transactions. You need to prioritize detection because missing even one fraudulent transaction could severely impact the credit card holder. You used AutoML to tram a model on users' profile information and credit card transaction data. After training the initial model, you notice that the model is failing to detect many fraudulent transactions. How should you adjust the training parameters in AutoML to improve model performance?

Choose 2 answers

Options:

A.

Increase the score threshold.

B.

Decrease the score threshold.

C.

Add more positive examples to the training set.

D.

Add more negative examples to the training set.

E.

Reduce the maximum number of node hours for training.

Buy Now
Questions 68

You work with a team of researchers to develop state-of-the-art algorithms for financial analysis. Your team develops and debugs complex models in TensorFlow. You want to maintain the ease of debugging while also reducing the model training time. How should you set up your training environment?

Options:

A.

Configure a v3-8 TPU VM SSH into the VM to tram and debug the model.

B.

Configure a v3-8 TPU node Use Cloud Shell to SSH into the Host VM to train and debug the model.

C.

Configure a M-standard-4 VM with 4 NVIDIA P100 GPUs SSH into the VM and use

Parameter Server Strategy to train the model.

D.

Configure a M-standard-4 VM with 4 NVIDIA P100 GPUs SSH into the VM and use

MultiWorkerMirroredStrategy to train the model.

Buy Now
Questions 69

You work for a pharmaceutical company based in Canada. Your team developed a BigQuery ML model to predict the number of flu infections for the next month in Canada Weather data is published weekly and flu infection statistics are published monthly. You need to configure a model retraining policy that minimizes cost What should you do?

Options:

A.

Download the weather and flu data each week Configure Cloud Scheduler to execute a Vertex Al pipeline to retrain the model weekly.

B.

Download the weather and flu data each month Configure Cloud Scheduler to execute a Vertex Al pipeline to retrain the model monthly.

C.

Download the weather and flu data each week Configure Cloud Scheduler to execute a Vertex Al pipeline to retrain the model every month.

D.

Download the weather data each week, and download the flu data each month Deploy the model to a Vertex Al endpoint with feature drift monitoring. and retrain the model if a monitoring alert is detected.

Buy Now
Questions 70

You deployed an ML model into production a year ago. Every month, you collect all raw requests that were sent to your model prediction service during the previous month. You send a subset of these requests to a human labeling service to evaluate your model’s performance. After a year, you notice that your model's performance sometimes degrades significantly after a month, while other times it takes several months to notice any decrease in performance. The labeling service is costly, but you also need to avoid large performance degradations. You want to determine how often you should retrain your model to maintain a high level of performance while minimizing cost. What should you do?

Options:

A.

Train an anomaly detection model on the training dataset, and run all incoming requests through this model. If an anomaly is detected, send the most recent serving data to the labeling service.

B.

Identify temporal patterns in your model’s performance over the previous year. Based on these patterns, create a schedule for sending serving data to the labeling service for the next year.

C.

Compare the cost of the labeling service with the lost revenue due to model performance degradation over the past year. If the lost revenue is greater than the cost of the labeling service, increase the frequency of model retraining; otherwise, decrease the model retraining frequency.

D.

Run training-serving skew detection batch jobs every few days to compare the aggregate statistics of the features in the training dataset with recent serving data. If skew is detected, send the most recent serving data to the labeling service.

Buy Now
Questions 71

You work for a magazine distributor and need to build a model that predicts which customers will renew their subscriptions for the upcoming year. Using your company’s historical data as your training set, you created a TensorFlow model and deployed it to AI Platform. You need to determine which customer attribute has the most predictive power for each prediction served by the model. What should you do?

Options:

A.

Use AI Platform notebooks to perform a Lasso regression analysis on your model, which will eliminate features that do not provide a strong signal.

B.

Stream prediction results to BigQuery. Use BigQuery’s CORR(X1, X2) function to calculate the Pearson correlation coefficient between each feature and the target variable.

C.

Use the AI Explanations feature on AI Platform. Submit each prediction request with the ‘explain’ keyword to retrieve feature attributions using the sampled Shapley method.

D.

Use the What-If tool in Google Cloud to determine how your model will perform when individual features are excluded. Rank the feature importance in order of those that caused the most significant performance drop when removed from the model.

Buy Now
Questions 72

You work for a pet food company that manages an online forum Customers upload photos of their pets on the forum to share with others About 20 photos are uploaded daily You want to automatically and in near real time detect whether each uploaded photo has an animal You want to prioritize time and minimize cost of your application development and deployment What should you do?

Options:

A.

Send user-submitted images to the Cloud Vision API Use object localization to identify all objects in the image and compare the results against a list of animals.

B.

Download an object detection model from TensorFlow Hub. Deploy the model to a Vertex Al endpoint. Send new user-submitted images to the model endpoint to classify whether each photo has an animal.

C.

Manually label previously submitted images with bounding boxes around any animals Build an AutoML object detection model by using Vertex Al Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to detect whether each photo has an animal.

D.

Manually label previously submitted images as having animals or not Create an image dataset on Vertex Al Train a classification model by using Vertex AutoML to distinguish the two classes Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to classify whether each photo has an animal.

Buy Now
Questions 73

You work for a retail company. You have been tasked with building a model to determine the probability of churn for each customer. You need the predictions to be interpretable so the results can be used to develop marketing campaigns that target at-risk customers. What should you do?

Options:

A.

Build a random forest regression model in a Vertex Al Workbench notebook instance Configure the model to generate feature importance’s after the model is trained.

B.

Build an AutoML tabular regression model Configure the model to generate explanations when it makes predictions.

C.

Build a custom TensorFlow neural network by using Vertex Al custom training Configure the model to generate explanations when it makes predictions.

D.

Build a random forest classification model in a Vertex Al Workbench notebook instance Configure the model to generate feature importance’s after the model is trained.

Buy Now
Questions 74

You have developed a fraud detection model for a large financial institution using Vertex AI. The model achieves high accuracy, but stakeholders are concerned about potential bias based on customer demographics. You have been asked to provide insights into the model's decision-making process and identify any fairness issues. What should you do?

Options:

A.

Enable Vertex AI Model Monitoring to detect training-serving skew. Configure an alert to send an email when the skew or drift for a model’s feature exceeds a predefined threshold. Retrain the model by appending new data to existing training data.

B.

Compile a dataset of unfair predictions. Use Vertex AI Vector Search to identify similar data points in the model's predictions. Report these data points to the stakeholders.

C.

Use feature attribution in Vertex AI to analyze model predictions and the impact of each feature on the model's predictions.

D.

Create feature groups using Vertex AI Feature Store to segregate customer demographic features and non-demographic features. Retrain the model using only non-demographic features.

Buy Now
Questions 75

You recently deployed a scikit-learn model to a Vertex Al endpoint You are now testing the model on live production traffic While monitoring the endpoint. you discover twice as many requests per hour than expected throughout the day You want the endpoint to efficiently scale when the demand increases in the future to prevent users from experiencing high latency What should you do?

Options:

A.

Deploy two models to the same endpoint and distribute requests among them evenly.

B.

Configure an appropriate minReplicaCount value based on expected baseline traffic.

C.

Set the target utilization percentage in the autcscalir.gMetricspecs configuration to a higher value

D.

Change the model's machine type to one that utilizes GPUs.

Buy Now
Questions 76

You work for a company that captures live video footage of checkout areas in their retail stores You need to use the live video footage to build a mode! to detect the number of customers waiting for service in near real time You want to implement a solution quickly and with minimal effort How should you build the model?

Options:

A.

Use the Vertex Al Vision Occupancy Analytics model.

B.

Use the Vertex Al Vision Person/vehicle detector model

C.

Train an AutoML object detection model on an annotated dataset by using Vertex AutoML

D.

Train a Seq2Seq+ object detection model on an annotated dataset by using Vertex AutoML

Buy Now
Questions 77

Your data science team has requested a system that supports scheduled model retraining, Docker containers, and a service that supports autoscaling and monitoring for online prediction requests. Which platform components should you choose for this system?

Options:

A.

Vertex AI Pipelines and App Engine

B.

Vertex AI Pipelines, Vertex AI Prediction, and Vertex AI Model Monitoring

C.

Cloud Composer, BigQuery ML, and Vertex AI Prediction

D.

Cloud Composer, Vertex AI Training with custom containers, and App Engine

Buy Now
Questions 78

You need to quickly build and train a model to predict the sentiment of customer reviews with custom categories without writing code. You do not have enough data to train a model from scratch. The resulting model should have high predictive performance. Which service should you use?

Options:

A.

AutoML Natural Language

B.

Cloud Natural Language API

C.

AI Hub pre-made Jupyter Notebooks

D.

AI Platform Training built-in algorithms

Buy Now
Questions 79

You have created a Vertex Al pipeline that includes two steps. The first step preprocesses 10 TB data completes in about 1 hour, and saves the result in a Cloud Storage bucket The second step uses the processed data to train a model You need to update the model's code to allow you to test different algorithms You want to reduce pipeline execution time and cost, while also minimizing pipeline changes What should you do?

Options:

A.

Add a pipeline parameter and an additional pipeline step Depending on the parameter value the pipeline step conducts or skips data preprocessing and starts model training.

B.

Create another pipeline without the preprocessing step, and hardcode the preprocessed Cloud Storage file location for model training.

C.

Configure a machine with more CPU and RAM from the compute-optimized machine family for the data preprocessing step.

D.

Enable caching for the pipeline job. and disable caching for the model training step.

Buy Now
Questions 80

You recently deployed a model to a Vertex Al endpoint Your data drifts frequently so you have enabled request-response logging and created a Vertex Al Model Monitoring job. You have observed that your model is receiving higher traffic than expected. You need to reduce the model monitoring cost while continuing to quickly detect drift. What should you do?

Options:

A.

Replace the monitoring job with a DataFlow pipeline that uses TensorFlow Data Validation (TFDV).

B.

Replace the monitoring job with a custom SQL scnpt to calculate statistics on the features and predictions in BigQuery.

C.

Decrease the sample_rate parameter in the Randomsampleconfig of the monitoring job.

D.

Increase the monitor_interval parameter in the scheduieconfig of the monitoring job.

Buy Now
Questions 81

You are using Kubeflow Pipelines to develop an end-to-end PyTorch-based MLOps pipeline. The pipeline reads data from BigQuery,

processes the data, conducts feature engineering, model training, model evaluation, and deploys the model as a binary file to Cloud Storage. You are

writing code for several different versions of the feature engineering and model training steps, and running each new version in Vertex Al Pipelines.

Each pipeline run is taking over an hour to complete. You want to speed up the pipeline execution to reduce your development time, and you want to

avoid additional costs. What should you do?

Options:

A.

Delegate feature engineering to BigQuery and remove it from the pipeline.

B.

Add a GPU to the model training step.

C.

Enable caching in all the steps of the Kubeflow pipeline.

D.

Comment out the part of the pipeline that you are not currently updating.

Buy Now
Questions 82

You are an ML engineer at a bank that has a mobile application. Management has asked you to build an ML-based biometric authentication for the app that verifies a customer's identity based on their fingerprint. Fingerprints are considered highly sensitive personal information and cannot be downloaded and stored into the bank databases. Which learning strategy should you recommend to train and deploy this ML model?

Options:

A.

Differential privacy

B.

Federated learning

C.

MD5 to encrypt data

D.

Data Loss Prevention API

Buy Now
Questions 83

You are developing a model to help your company create more targeted online advertising campaigns. You need to create a dataset that you will use to train the model. You want to avoid creating or reinforcing unfair bias in the model. What should you do?

Choose 2 answers

Options:

A.

Include a comprehensive set of demographic features.

B.

include only the demographic groups that most frequently interact with advertisements.

C.

Collect a random sample of production traffic to build the training dataset.

D.

Collect a stratified sample of production traffic to build the training dataset.

E.

Conduct fairness tests across sensitive categories and demographics on the trained model.

Buy Now
Questions 84

Your company manages an ecommerce website. You developed an ML model that recommends additional products to users in near real time based on items currently in the user's cart. The workflow will include the following processes.

1 The website will send a Pub/Sub message with the relevant data and then receive a message with the prediction from Pub/Sub.

2 Predictions will be stored in BigQuery

3. The model will be stored in a Cloud Storage bucket and will be updated frequently

You want to minimize prediction latency and the effort required to update the model How should you reconfigure the architecture?

Options:

A.

Write a Cloud Function that loads the model into memory for prediction Configure the function to be

triggered when messages are sent to Pub/Sub.

B.

Create a pipeline in Vertex Al Pipelines that performs preprocessing, prediction and postprocessing

Configure the pipeline to be triggered by a Cloud Function when messages are sent to Pub/Sub.

C.

Expose the model as a Vertex Al endpoint Write a custom DoFn in a Dataflow job that calls the endpoint for

prediction.

D.

Use the Runlnference API with watchFilePatterr. in a Dataflow job that wraps around the model and serves predictions.

Buy Now
Questions 85

You recently joined a machine learning team that will soon release a new project. As a lead on the project, you are asked to determine the production readiness of the ML components. The team has already tested features and data, model development, and infrastructure. Which additional readiness check should you recommend to the team?

Options:

A.

Ensure that training is reproducible

B.

Ensure that all hyperparameters are tuned

C.

Ensure that model performance is monitored

D.

Ensure that feature expectations are captured in the schema

Buy Now
Exam Name: Google Professional Machine Learning Engineer
Last Update: Jan 12, 2025
Questions: 285

PDF + Testing Engine

$57.75  $164.99

Testing Engine

$43.75  $124.99
buy now Professional-Machine-Learning-Engineer testing engine

PDF (Q&A)

$36.75  $104.99
buy now Professional-Machine-Learning-Engineer pdf
dumpsmate guaranteed to pass
24/7 Customer Support

DumpsMate's team of experts is always available to respond your queries on exam preparation. Get professional answers on any topic of the certification syllabus. Our experts will thoroughly satisfy you.

Site Secure

mcafee secure

TESTED 18 Jan 2025