Winter Sale - Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dpm65

Associate-Data-Practitioner Google Cloud Associate Data Practitioner ( ADP Exam ) Questions and Answers

Questions 4

You are constructing a data pipeline to process sensitive customer data stored in a Cloud Storage bucket. You need to ensure that this data remains accessible, even in the event of a single-zone outage. What should you do?

Options:

A.

Set up a Cloud CDN in front of the bucket.

B.

Enable Object Versioning on the bucket.

C.

Store the data in a multi-region bucket.

D.

Store the data in Nearline storaqe.

Buy Now
Questions 5

You are working with a large dataset of customer reviews stored in Cloud Storage. The dataset contains several inconsistencies, such as missing values, incorrect data types, and duplicate entries. You need to clean the data to ensure that it is accurate and consistent before using it for analysis. What should you do?

Options:

A.

Use the PythonOperator in Cloud Composer to clean the data and load it into BigQuery. Use SQL for analysis.

B.

Use BigQuery to batch load the data into BigQuery. Use SQL for cleaning and analysis.

C.

Use Storage Transfer Service to move the data to a different Cloud Storage bucket. Use event triggers to invoke Cloud Run functions to load the data into BigQuery. Use SQL for analysis.

D.

Use Cloud Run functions to clean the data and load it into BigQuery. Use SQL for analysis.

Buy Now
Questions 6

Your organization sends IoT event data to a Pub/Sub topic. Subscriber applications read and perform transformations on the messages before storing them in the data warehouse. During particularly busy times when more data is being written to the topic, you notice that the subscriber applications are not acknowledging messages within the deadline. You need to modify your pipeline to handle these activity spikes and continue to process the messages. What should you do?

Options:

A.

Retry messages until they are acknowledged.

B Implement flow control on the subscribers

B.

Forward unacknowledged messages to a dead-letter topic.

C.

Seek back to the last acknowledged message.

Buy Now
Questions 7

Your organization needs to implement near real-time analytics for thousands of events arriving each second in Pub/Sub. The incoming messages require transformations. You need to configure a pipeline that processes, transforms, and loads the data into BigQuery while minimizing development time. What should you do?

Options:

A.

Use a Google-provided Dataflow template to process the Pub/Sub messages, perform transformations, and write the results to BigQuery.

B.

Create a Cloud Data Fusion instance and configure Pub/Sub as a source. Use Data Fusion to process the Pub/Sub messages, perform transformations, and write the results to BigQuery.

C.

Load the data from Pub/Sub into Cloud Storage using a Cloud Storage subscription. Create a Dataproc cluster, use PySpark to perform transformations in Cloud Storage, and write the results to BigQuery.

D.

Use Cloud Run functions to process the Pub/Sub messages, perform transformations, and write the results to BigQuery.

Buy Now
Questions 8

Your company uses Looker to generate and share reports with various stakeholders. You have a complex dashboard with several visualizations that needs to be delivered to specific stakeholders on a recurring basis, with customized filters applied for each recipient. You need an efficient and scalable solution to automate the delivery of this customized dashboard. You want to follow the Google-recommended approach. What should you do?

Options:

A.

Create a separate LookML model for each stakeholder with predefined filters, and schedule the dashboards using the Looker Scheduler.

B.

Create a script using the Looker Python SDK, and configure user attribute filter values. Generate a new scheduled plan for each stakeholder.

C.

Embed the Looker dashboard in a custom web application, and use the application's scheduling features to send the report with personalized filters.

D.

Use the Looker Scheduler with a user attribute filter on the dashboard, and send the dashboard with personalized filters to each stakeholder based on their attributes.

Buy Now
Questions 9

You are a data analyst at your organization. You have been given a BigQuery dataset that includes customer information. The dataset contains inconsistencies and errors, such as missing values, duplicates, and formatting issues. You need to effectively and quickly clean the data. What should you do?

Options:

A.

Develop a Dataflow pipeline to read the data from BigQuery, perform data quality rules and transformations, and write the cleaned data back to BigQuery.

B.

Use Cloud Data Fusion to create a data pipeline to read the data from BigQuery, perform data quality transformations, and write the clean data back to BigQuery.

C.

Export the data from BigQuery to CSV files. Resolve the errors using a spreadsheet editor, and re-import the cleaned data into BigQuery.

D.

Use BigQuery's built-in functions to perform data quality transformations.

Buy Now
Questions 10

Your company is building a near real-time streaming pipeline to process JSON telemetry data from small appliances. You need to process messages arriving at a Pub/Sub topic, capitalize letters in the serial number field, and write results to BigQuery. You want to use a managed service and write a minimal amount of code for underlying transformations. What should you do?

Options:

A.

Use a Pub/Sub to BigQuery subscription, write results directly to BigQuery, and schedule a transformation query to run every five minutes.

B.

Use a Pub/Sub to Cloud Storage subscription, write a Cloud Run service that is triggered when objects arrive in the bucket, performs the transformations, and writes the results to BigQuery.

C.

Use the “Pub/Sub to BigQuery” Dataflow template with a UDF, and write the results to BigQuery.

D.

Use a Pub/Sub push subscription, write a Cloud Run service that accepts the messages, performs the transformations, and writes the results to BigQuery.

Buy Now
Questions 11

You used BigQuery ML to build a customer purchase propensity model six months ago. You want to compare the current serving data with the historical serving data to determine whether you need to retrain the model. What should you do?

Options:

A.

Compare the two different models.

B.

Evaluate the data skewness.

C.

Evaluate data drift.

D.

Compare the confusion matrix.

Buy Now
Questions 12

Your organization has highly sensitive data that gets updated once a day and is stored across multiple datasets in BigQuery. You need to provide a new data analyst access to query specific data in BigQuery while preventing access to sensitive data. What should you do?

Options:

A.

Grant the data analyst the BigQuery Job User IAM role in the Google Cloud project.

B.

Create a materialized view with the limited data in a new dataset. Grant the data analyst BigQuery Data Viewer IAM role in the dataset and the BigQuery Job User IAM role in the Google Cloud project.

C.

Create a new Google Cloud project, and copy the limited data into a BigQuery table. Grant the data analyst the BigQuery Data Owner IAM role in the new Google Cloud project.

D.

Grant the data analyst the BigQuery Data Viewer IAM role in the Google Cloud project.

Buy Now
Questions 13

Your company is migrating their batch transformation pipelines to Google Cloud. You need to choose a solution that supports programmatic transformations using only SQL. You also want the technology to support Git integration for version control of your pipelines. What should you do?

Options:

A.

Use Cloud Data Fusion pipelines.

B.

Use Dataform workflows.

C.

Use Dataflow pipelines.

D.

Use Cloud Composer operators.

Buy Now
Questions 14

You need to create a new data pipeline. You want a serverless solution that meets the following requirements:

• Data is streamed from Pub/Sub and is processed in real-time.

• Data is transformed before being stored.

• Data is stored in a location that will allow it to be analyzed with SQL using Looker.

Associate-Data-Practitioner Question 14

Which Google Cloud services should you recommend for the pipeline?

Options:

A.

1. Dataproc Serverless

2. Bigtable

B.

1. Cloud Composer

2. Cloud SQL for MySQL

C.

1. BigQuery

2. Analytics Hub

D.

1. Dataflow

2. BigQuery

Buy Now
Questions 15

Your retail organization stores sensitive application usage data in Cloud Storage. You need to encrypt the data without the operational overhead of managing encryption keys. What should you do?

Options:

A.

Use Google-managed encryption keys (GMEK).

B.

Use customer-managed encryption keys (CMEK).

C.

Use customer-supplied encryption keys (CSEK).

D.

Use customer-supplied encryption keys (CSEK) for the sensitive data and customer-managed encryption keys (CMEK) for the less sensitive data.

Buy Now
Questions 16

Your organization has several datasets in their data warehouse in BigQuery. Several analyst teams in different departments use the datasets to run queries. Your organization is concerned about the variability of their monthly BigQuery costs. You need to identify a solution that creates a fixed budget for costs associated with the queries run by each department. What should you do?

Options:

A.

Create a custom quota for each analyst in BigQuery.

B.

Create a single reservation by using BigQuery editions. Assign all analysts to the reservation.

C.

Assign each analyst to a separate project associated with their department. Create a single reservation by using BigQuery editions. Assign all projects to the reservation.

D.

Assign each analyst to a separate project associated with their department. Create a single reservation for each department by using BigQuery editions. Create assignments for each project in the appropriate reservation.

Buy Now
Questions 17

You have a Dataproc cluster that performs batch processing on data stored in Cloud Storage. You need to schedule a daily Spark job to generate a report that will be emailed to stakeholders. You need a fully-managed solution that is easy to implement and minimizes complexity. What should you do?

Options:

A.

Use Cloud Composer to orchestrate the Spark job and email the report.

B.

Use Dataproc workflow templates to define and schedule the Spark job, and to email the report.

C.

Use Cloud Run functions to trigger the Spark job and email the report.

D.

Use Cloud Scheduler to trigger the Spark job. and use Cloud Run functions to email the report.

Buy Now
Questions 18

Your team uses the Google Ads platform to visualize metrics. You want to export the data to BigQuery to get more granular insights. You need to execute a one-time transfer of historical data and automatically update data daily. You want a solution that is low-code, serverless, and requires minimal maintenance. What should you do?

Options:

A.

Export the historical data to BigQuery by using BigQuery Data Transfer Service. Use Cloud Composer for daily automation.

B.

Export the historical data to Cloud Storage by using Storage Transfer Service. Use Pub/Sub to trigger a Dataflow template that loads data for daily automation.

C.

Export the historical data as a CSV file. Import the file into BigQuery for analysis. Use Cloud Composer for daily automation.

D.

Export the historical data to BigQuery by using BigQuery Data Transfer Service. Use BigQuery Data Transfer Service for daily automation.

Buy Now
Questions 19

You need to design a data pipeline that ingests data from CSV, Avro, and Parquet files into Cloud Storage. The data includes raw user input. You need to remove all malicious SQL injections before storing the data in BigQuery. Which data manipulation methodology should you choose?

Options:

A.

EL

B.

ELT

C.

ETL

D.

ETLT

Buy Now
Questions 20

You manage a BigQuery table that is used for critical end-of-month reports. The table is updated weekly with new sales data. You want to prevent data loss and reporting issues if the table is accidentally deleted. What should you do?

Options:

A.

Configure the time travel duration on the table to be exactly seven days. On deletion, re-create the deleted table solely from the time travel data.

B.

Schedule the creation of a new snapshot of the table once a week. On deletion, re-create the deleted table using the snapshot and time travel data.

C.

Create a clone of the table. On deletion, re-create the deleted table by copying the content of the clone.

D.

Create a view of the table. On deletion, re-create the deleted table from the view and time travel data.

Buy Now
Questions 21

You are predicting customer churn for a subscription-based service. You have a 50 PB historical customer dataset in BigQuery that includes demographics, subscription information, and engagement metrics. You want to build a churn prediction model with minimal overhead. You want to follow the Google-recommended approach. What should you do?

Options:

A.

Export the data from BigQuery to a local machine. Use scikit-learn in a Jupyter notebook to build the churn prediction model.

B.

Use Dataproc to create a Spark cluster. Use the Spark MLlib within the cluster to build the churn prediction model.

C.

Create a Looker dashboard that is connected to BigQuery. Use LookML to predict churn.

D.

Use the BigQuery Python client library in a Jupyter notebook to query and preprocess the data in BigQuery. Use the CREATE MODEL statement in BigQueryML to train the churn prediction model.

Buy Now
Exam Name: Google Cloud Associate Data Practitioner ( ADP Exam )
Last Update: Feb 3, 2025
Questions: 72

PDF + Testing Engine

$57.75  $164.99

Testing Engine

$43.75  $124.99
buy now Associate-Data-Practitioner testing engine

PDF (Q&A)

$36.75  $104.99
buy now Associate-Data-Practitioner pdf
dumpsmate guaranteed to pass
24/7 Customer Support

DumpsMate's team of experts is always available to respond your queries on exam preparation. Get professional answers on any topic of the certification syllabus. Our experts will thoroughly satisfy you.

Site Secure

mcafee secure

TESTED 05 Feb 2025