Weekend Special Sale - 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dm70dm

Professional-Data-Engineer Google Professional Data Engineer Exam Questions and Answers

Questions 4

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Professional-Data-Engineer Question 4

Professional-Data-Engineer Question 4

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Buy Now
Questions 5

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 6

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Buy Now
Questions 7

Which of these statements about BigQuery caching is true?

Options:

A.

By default, a query's results are not cached.

B.

BigQuery caches query results for 48 hours.

C.

Query results are cached even if you specify a destination table.

D.

There is no charge for a query that retrieves its results from cache.

Buy Now
Questions 8

Which of the following are examples of hyperparameters? (Select 2 answers.)

Options:

A.

Number of hidden layers

B.

Number of nodes in each hidden layer

C.

Biases

D.

Weights

Buy Now
Questions 9

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Buy Now
Questions 10

The YARN ResourceManager and the HDFS NameNode interfaces are available on a Cloud Dataproc cluster ____.

Options:

A.

application node

B.

conditional node

C.

master node

D.

worker node

Buy Now
Questions 11

You are migrating a large number of files from a public HTTPS endpoint to Cloud Storage. The files are protected from unauthorized access using signed URLs. You created a TSV file that contains the list of object URLs and started a transfer job by using Storage Transfer Service. You notice that the job has run for a long time and eventually failed Checking the logs of the transfer job reveals that the job was running fine until one point, and then it failed due to HTTP 403 errors on the remaining files You verified that there were no changes to the source system You need to fix the problem to resume the migration process. What should you do?

Options:

A.

Set up Cloud Storage FUSE, and mount the Cloud Storage bucket on a Compute Engine Instance Remove the completed files from the TSV file Use a shell script to iterate through the TSV file and download the remaining URLs to the FUSE mount point.

B.

Update the file checksums in the TSV file from using MD5 to SHA256. Remove the completed files from the TSV file and rerun the Storage Transfer Service job.

C.

Renew the TLS certificate of the HTTPS endpoint Remove the completed files from the TSV file and rerun the Storage Transfer Service job.

D.

Create a new TSV file for the remaining files by generating signed URLs with a longer validity period. Split the TSV file into multiple smaller files and submit them as separate Storage Transfer Service jobs in parallel.

Buy Now
Questions 12

Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?

Options:

A.

categorical_column_with_vocabulary_list

B.

categorical_column_with_hash_bucket

C.

categorical_column_with_unknown_values

D.

sparse_column_with_keys

Buy Now
Questions 13

Which of these rules apply when you add preemptible workers to a Dataproc cluster (select 2 answers)?

Options:

A.

Preemptible workers cannot use persistent disk.

B.

Preemptible workers cannot store data.

C.

If a preemptible worker is reclaimed, then a replacement worker must be added manually.

D.

A Dataproc cluster cannot have only preemptible workers.

Buy Now
Questions 14

What is the general recommendation when designing your row keys for a Cloud Bigtable schema?

Options:

A.

Include multiple time series values within the row key

B.

Keep the row keep as an 8 bit integer

C.

Keep your row key reasonably short

D.

Keep your row key as long as the field permits

Buy Now
Questions 15

Which methods can be used to reduce the number of rows processed by BigQuery?

Options:

A.

Splitting tables into multiple tables; putting data in partitions

B.

Splitting tables into multiple tables; putting data in partitions; using the LIMIT clause

C.

Putting data in partitions; using the LIMIT clause

D.

Splitting tables into multiple tables; using the LIMIT clause

Buy Now
Questions 16

The CUSTOM tier for Cloud Machine Learning Engine allows you to specify the number of which types of cluster nodes?

Options:

A.

Workers

B.

Masters, workers, and parameter servers

C.

Workers and parameter servers

D.

Parameter servers

Buy Now
Questions 17

Which software libraries are supported by Cloud Machine Learning Engine?

Options:

A.

Theano and TensorFlow

B.

Theano and Torch

C.

TensorFlow

D.

TensorFlow and Torch

Buy Now
Questions 18

You work for a large real estate firm and are preparing 6 TB of home sales data lo be used for machine learning You will use SOL to transform the data and use BigQuery ML lo create a machine learning model. You plan to use the model for predictions against a raw dataset that has not been transformed. How should you set up your workflow in order to prevent skew at prediction time?

Options:

A.

When creating your model, use BigQuerys TRANSFORM clause to define preprocessing stops. At prediction time, use BigQuery"s ML. EVALUATE clause without specifying any transformations on the raw input data.

B.

When creating your model, use BigQuery's TRANSFORM clause to define preprocessing steps Before requesting predictions, use a saved query to transform your raw input data, and then use ML. EVALUATE

C.

Use a BigOuery to define your preprocessing logic. When creating your model, use the view as your model training data. At prediction lime, use BigQuery's ML EVALUATE clause without specifying any transformations on the raw input data.

D.

Preprocess all data using Dataflow. At prediction time, use BigOuery"s ML. EVALUATE clause without specifying any further transformations on the input data.

Buy Now
Questions 19

You need to choose a database to store time series CPU and memory usage for millions of computers. You need to store this data in one-second interval samples. Analysts will be performing real-time, ad hoc analytics against the database. You want to avoid being charged for every query executed and ensure that the schema design will allow for future growth of the dataset. Which database and data model should you choose?

Options:

A.

Create a table in BigQuery, and append the new samples for CPU and memory to the table

B.

Create a wide table in BigQuery, create a column for the sample value at each second, and update the row with the interval for each second

C.

Create a narrow table in Cloud Bigtable with a row key that combines the Computer Engine computer identifier with the sample time at each second

D.

Create a wide table in Cloud Bigtable with a row key that combines the computer identifier with the sample time at each minute, and combine the values for each second as column data.

Buy Now
Questions 20

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all the data in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Buy Now
Questions 21

You are operating a streaming Cloud Dataflow pipeline. Your engineers have a new version of the pipeline with a different windowing algorithm and triggering strategy. You want to update the running pipeline with the new version. You want to ensure that no data is lost during the update. What should you do?

Options:

A.

Update the Cloud Dataflow pipeline inflight by passing the --update option with the --jobName set to the existing job name

B.

Update the Cloud Dataflow pipeline inflight by passing the --update option with the --jobName set to a new unique job name

C.

Stop the Cloud Dataflow pipeline with the Cancel option. Create a new Cloud Dataflow job with the updated code

D.

Stop the Cloud Dataflow pipeline with the Drain option. Create a new Cloud Dataflow job with the updated code

Buy Now
Questions 22

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Buy Now
Questions 23

You need to create a new transaction table in Cloud Spanner that stores product sales data. You are deciding what to use as a primary key. From a performance perspective, which strategy should you choose?

Options:

A.

The current epoch time

B.

A concatenation of the product name and the current epoch time

C.

A random universally unique identifier number (version 4 UUID)

D.

The original order identification number from the sales system, which is a monotonically increasing integer

Buy Now
Questions 24

You are a head of BI at a large enterprise company with multiple business units that each have different priorities and budgets. You use on-demand pricing for BigQuery with a quota of 2K concurrent on-demand slots per project. Users at your organization sometimes don’t get slots to execute their query and you need to correct this. You’d like to avoid introducing new projects to your account.

What should you do?

Options:

A.

Convert your batch BQ queries into interactive BQ queries.

B.

Create an additional project to overcome the 2K on-demand per-project quota.

C.

Switch to flat-rate pricing and establish a hierarchical priority model for your projects.

D.

Increase the amount of concurrent slots per project at the Quotas page at the Cloud Console.

Buy Now
Questions 25

Your organization is modernizing their IT services and migrating to Google Cloud. You need to organize the data that will be stored in Cloud Storage and BigQuery. You need to enable a data mesh approach to share the data between sales, product design, and marketing departments What should you do?

Options:

A.

1Create a project for storage of the data for your organization.

2 Create a central Cloud Storage bucket with three folders to store the files for each department.

3. Create a central BigQuery dataset with tables prefixed with the department name.

4 Give viewer rights for the storage project for the users of your departments.

B.

1Create a project for storage of the data for each of your departments.

2 Enable each department to create Cloud Storage buckets and BigQuery datasets.

3. Create user groups for authorized readers for each bucket and dataset.

4 Enable the IT team to administer the user groups to add or remove users as the departments' request.

C.

1 Create multiple projects for storage of the data for each of your departments' applications.

2 Enable each department to create Cloud Storage buckets and BigQuery datasets.

3. Publish the data that each department shared in Analytics Hub.

4 Enable all departments to discover and subscribe to the data they need in Analytics Hub.

D.

1 Create multiple projects for storage of the data for each of your departments' applications.

2 Enable each department to create Cloud Storage buckets and BigQuery datasets.

3 In Dataplex, map each department to a data lake and the Cloud Storage buckets, and map the BigQuery datasets to zones.

4 Enable each department to own and share the data of their data lakes.

Buy Now
Questions 26

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Buy Now
Questions 27

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Buy Now
Questions 28

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

Options:

A.

Issue a command to restart the database servers.

B.

Retry the query with exponential backoff, up to a cap of 15 minutes.

C.

Retry the query every second until it comes back online to minimize staleness of data.

D.

Reduce the query frequency to once every hour until the database comes back online.

Buy Now
Questions 29

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

Options:

A.

Send the data to Google Cloud Datastore and then export to BigQuery.

B.

Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.

C.

Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.

D.

Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Buy Now
Questions 30

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

Options:

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Buy Now
Questions 31

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.

Which Google database service should you use?

Options:

A.

Cloud SQL

B.

BigQuery

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 32

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

Options:

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Buy Now
Questions 33

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

Options:

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Buy Now
Questions 34

Your company is using WHILECARD tables to query data across multiple tables with similar names. The SQL statement is currently failing with the following error:

# Syntax error : Expected end of statement but got “-“ at [4:11]

SELECT age

FROM

bigquery-public-data.noaa_gsod.gsod

WHERE

age != 99

AND_TABLE_SUFFIX = ‘1929’

ORDER BY

age DESC

Which table name will make the SQL statement work correctly?

Options:

A.

‘bigquery-public-data.noaa_gsod.gsod‘

B.

bigquery-public-data.noaa_gsod.gsod*

C.

‘bigquery-public-data.noaa_gsod.gsod’*

D.

‘bigquery-public-data.noaa_gsod.gsod*`

Buy Now
Questions 35

You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?

Options:

A.

Update the current pipeline and use the drain flag.

B.

Update the current pipeline and provide the transform mapping JSON object.

C.

Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.

D.

Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.

Buy Now
Questions 36

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Buy Now
Questions 37

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

Options:

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Buy Now
Questions 38

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Buy Now
Questions 39

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Buy Now
Questions 40

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Buy Now
Questions 41

Which of these is not a supported method of putting data into a partitioned table?

Options:

A.

If you have existing data in a separate file for each day, then create a partitioned table and upload each file into the appropriate partition.

B.

Run a query to get the records for a specific day from an existing table and for the destination table, specify a partitioned table ending with the day in the format "$YYYYMMDD".

C.

Create a partitioned table and stream new records to it every day.

D.

Use ORDER BY to put a table's rows into chronological order and then change the table's type to "Partitioned".

Buy Now
Questions 42

Which of the following is not possible using primitive roles?

Options:

A.

Give a user viewer access to BigQuery and owner access to Google Compute Engine instances.

B.

Give UserA owner access and UserB editor access for all datasets in a project.

C.

Give a user access to view all datasets in a project, but not run queries on them.

D.

Give GroupA owner access and GroupB editor access for all datasets in a project.

Buy Now
Questions 43

Which Java SDK class can you use to run your Dataflow programs locally?

Options:

A.

LocalRunner

B.

DirectPipelineRunner

C.

MachineRunner

D.

LocalPipelineRunner

Buy Now
Questions 44

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Buy Now
Questions 45

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Buy Now
Questions 46

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Buy Now
Questions 47

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Buy Now
Questions 48

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Buy Now
Questions 49

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Buy Now
Questions 50

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Buy Now
Questions 51

You are designing a messaging system by using Pub/Sub to process clickstream data with an event-driven consumer app that relies on a push subscription. You need to configure the messaging system that is reliable enough to handle temporary downtime of the consumer app. You also need the messaging system to store the input messages that cannot be consumed by the subscriber. The system needs to retry failed messages gradually, avoiding overloading the consumer app, and store the failed messages after a maximum of 10 retries in a topic. How should you configure the Pub/Sub subscription?

Options:

A.

Increase the acknowledgement deadline to 10 minutes.

B.

Use immediate redelivery as the subscription retry policy, and configure dead lettering to a different topic with maximum delivery attempts set to 10.

C.

Use exponential backoff as the subscription retry policy, and configure dead lettering to the same source topic with maximum delivery attempts set to 10.

D.

Use exponential backoff as the subscription retry policy, and configure dead lettering to a different topic with maximum delivery attempts set to 10.

Buy Now
Questions 52

You are a retailer that wants to integrate your online sales capabilities with different in-home assistants, such as Google Home. You need to interpret customer voice commands and issue an order to the backend systems. Which solutions should you choose?

Options:

A.

Cloud Speech-to-Text API

B.

Cloud Natural Language API

C.

Dialogflow Enterprise Edition

D.

Cloud AutoML Natural Language

Buy Now
Questions 53

A web server sends click events to a Pub/Sub topic as messages. The web server includes an event Timestamp attribute in the messages, which is the time when the click occurred. You have a Dataflow streaming job that reads from this Pub/Sub topic through a subscription, applies some transformations, and writes the result to another Pub/Sub topic for use by the advertising department. The advertising department needs to receive each message within 30 seconds of the corresponding click occurrence, but they report receiving the messages late. Your Dataflow job's system lag is about 5 seconds, and the data freshness is about 40 seconds. Inspecting a few messages show no more than 1 second lag between their event Timestamp and publish Time. What is the problem and what should you do?

Options:

A.

The advertising department is causing delays when consuming the messages. Work with the advertising department to fix this.

B.

Messages in your Dataflow job are processed in less than 30 seconds, but your job cannot keep up with the backlog in the Pub/Sub

subscription. Optimize your job or increase the number of workers to fix this.

C.

The web server is not pushing messages fast enough to Pub/Sub. Work with the web server team to fix this.

D.

Messages in your Dataflow job are taking more than 30 seconds to process. Optimize your job or increase the number of workers to fix this.

Buy Now
Questions 54

You are designing a pipeline that publishes application events to a Pub/Sub topic. You need to aggregate events across hourly intervals before loading the results to BigQuery for analysis. Your solution must be scalable so it can process and load large volumes of events to BigQuery. What should you do?

Options:

A.

Create a streaming Dataflow job to continually read from the Pub/Sub topic and perform the necessary aggregations using tumbling windows

B.

Schedule a batch Dataflow job to run hourly, pulling all available messages from the Pub-Sub topic and performing the necessary aggregations

C.

Schedule a Cloud Function to run hourly, pulling all avertable messages from the Pub/Sub topic and performing the necessary aggregations

D.

Create a Cloud Function to perform the necessary data processing that executes using the Pub/Sub trigger every time a new message is published to the topic.

Buy Now
Questions 55

Your financial services company is moving to cloud technology and wants to store 50 TB of financial timeseries data in the cloud. This data is updated frequently and new data will be streaming in all the time. Your company also wants to move their existing Apache Hadoop jobs to the cloud to get insights into this data.

Which product should they use to store the data?

Options:

A.

Cloud Bigtable

B.

Google BigQuery

C.

Google Cloud Storage

D.

Google Cloud Datastore

Buy Now
Questions 56

You want to migrate an on-premises Hadoop system to Cloud Dataproc. Hive is the primary tool in use, and the data format is Optimized Row Columnar (ORC). All ORC files have been successfully copied to a Cloud Storage bucket. You need to replicate some data to the cluster’s local Hadoop Distributed File System (HDFS) to maximize performance. What are two ways to start using Hive in Cloud Dataproc? (Choose two.)

Options:

A.

Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to HDFS. Mount the Hive tables locally.

B.

Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to any node of the Dataproc cluster. Mount the Hive tables locally.

C.

Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to the master node of the Dataproc cluster. Then run the Hadoop utility to copy them do HDFS. Mount the Hive tables from HDFS.

D.

Leverage Cloud Storage connector for Hadoop to mount the ORC files as external Hive tables. Replicate external Hive tables to the native ones.

E.

Load the ORC files into BigQuery. Leverage BigQuery connector for Hadoop to mount the BigQuery tables as external Hive tables. Replicate external Hive tables to the native ones.

Buy Now
Questions 57

You have a BigQuery dataset named "customers". All tables will be tagged by using a Data Catalog tag template named "gdpr". The template contains one mandatory field, "has sensitive data~. with a boolean value. All employees must be able to do a simple search and find tables in the dataset that have either true or false in the "has sensitive data" field. However, only the Human Resources (HR) group should be able to see the data inside the tables for which "hass-ensitive-data" is true. You give the all employees group the bigquery.metadataViewer and bigquery.connectionUser roles on the dataset. You want to minimize configuration overhead. What should you do next?

Options:

A.

Create the "gdpr" tag template with private visibility. Assign the bigquery -dataViewer role to the HR group on the tables that contain sensitive data.

B.

Create the ~gdpr" tag template with private visibility. Assign the datacatalog. tagTemplateViewer role on this tag to the all employees

group, and assign the bigquery.dataViewer role to the HR group on the tables that contain sensitive data.

C.

Create the "gdpr" tag template with public visibility. Assign the bigquery. dataViewer role to the HR group on the tables that contain

sensitive data.

D.

Create the "gdpr" tag template with public visibility. Assign the datacatalog. tagTemplateViewer role on this tag to the all employees.

group, and assign the bijquery.dataViewer role to the HR group on the tables that contain sensitive data.

Buy Now
Exam Name: Google Professional Data Engineer Exam
Last Update: Feb 14, 2025
Questions: 374

PDF + Testing Engine

$49.5  $164.99

Testing Engine

$37.5  $124.99
buy now Professional-Data-Engineer testing engine

PDF (Q&A)

$31.5  $104.99
buy now Professional-Data-Engineer pdf
dumpsmate guaranteed to pass
24/7 Customer Support

DumpsMate's team of experts is always available to respond your queries on exam preparation. Get professional answers on any topic of the certification syllabus. Our experts will thoroughly satisfy you.

Site Secure

mcafee secure

TESTED 21 Feb 2025