Black Friday Special - 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dm70dm

Databricks-Machine-Learning-Professional Databricks Certified Machine Learning Professional Questions and Answers

Questions 4

Which of the following is a benefit of logging a model signature with an MLflow model?

Options:

A.

The model will have a unique identifier in the MLflow experiment

B.

The schema of input data can be validated when serving models

C.

The model can be deployed using real-time serving tools

D.

The model will be secured by the user that developed it

E.

The schema of input data will be converted to match the signature

Buy Now
Questions 5

A data scientist would like to enable MLflow Autologging for all machine learning libraries used in a notebook. They want to ensure that MLflow Autologging is used no matter what version of the Databricks Runtime for Machine Learning is used to run the notebook and no matter what workspace-wide configurations are selected in the Admin Console.

Which of the following lines of code can they use to accomplish this task?

Options:

A.

mlflow.sklearn.autolog()

B.

mlflow.spark.autolog()

C.

spark.conf.set(“autologging”, True)

D.

It is not possible to automatically log MLflow runs.

E.

mlflow.autolog()

Buy Now
Questions 6

A data scientist set up a machine learning pipeline to automatically log a data visualization with each run. They now want to view the visualizations in Databricks.

Which of the following locations in Databricks will show these data visualizations?

Options:

A.

The MLflow Model RegistryModel paqe

B.

The Artifacts section of the MLflow Experiment page

C.

Logged data visualizations cannot be viewed in Databricks

D.

The Artifacts section of the MLflow Run page

E.

The Figures section of the MLflow Run page

Buy Now
Questions 7

A data scientist has developed a scikit-learn modelsklearn_modeland they want to log the model using MLflow.

They write the following incomplete code block:

Databricks-Machine-Learning-Professional Question 7

Which of the following lines of code can be used to fill in the blank so the code block can successfully complete the task?

Options:

A.

mlflow.spark.track_model(sklearn_model, "model")

B.

mlflow.sklearn.log_model(sklearn_model, "model")

C.

mlflow.spark.log_model(sklearn_model, "model")

D.

mlflow.sklearn.load_model("model")

E.

mlflow.sklearn.track_model(sklearn_model, "model")

Buy Now
Questions 8

A machine learning engineer has created a webhook with the following code block:

Databricks-Machine-Learning-Professional Question 8

Which of the following code blocks will trigger this webhook to run the associate job?

A)

Databricks-Machine-Learning-Professional Question 8

B)

Databricks-Machine-Learning-Professional Question 8

C)

Databricks-Machine-Learning-Professional Question 8

D)

Databricks-Machine-Learning-Professional Question 8

E)

Databricks-Machine-Learning-Professional Question 8

Options:

A.

Option A

B.

Option B

C.

Option C

D.

Option D

E.

Option E

Buy Now
Questions 9

After a data scientist noticed that a column was missing from a production feature set stored as a Delta table, the machine learning engineering team has been tasked with determining when the column was dropped from the feature set.

Which of the following SQL commands can be used to accomplish this task?

Options:

A.

VERSION

B.

DESCRIBE

C.

HISTORY

D.

DESCRIBE HISTORY

E.

TIMESTAMP

Buy Now
Questions 10

Which of the following MLflow operations can be used to automatically calculate and log a Shapley feature importance plot?

Options:

A.

mlflow.shap.log_explanation

B.

None of these operations can accomplish the task.

C.

mlflow.shap

D.

mlflow.log_figure

E.

client.log_artifact

Buy Now
Questions 11

A data scientist has developed and logged a scikit-learn random forest model model, and then they ended their Spark session and terminated their cluster. After starting a new cluster, they want to review the feature_importances_ of the original model object.

Which of the following lines of code can be used to restore the model object so that feature_importances_ is available?

Options:

A.

mlflow.load_model(model_uri)

B.

client.list_artifacts(run_id)["feature-importances.csv"]

C.

mlflow.sklearn.load_model(model_uri)

D.

This can only be viewed in the MLflow Experiments UI

E.

client.pyfunc.load_model(model_uri)

Buy Now
Questions 12

A machine learning engineer is using the following code block as part of a batch deployment pipeline:

Databricks-Machine-Learning-Professional Question 12

Which of the following changes needs to be made so this code block will work when theinferencetable is a stream source?

Options:

A.

Replace "inference" with the path to the location of the Delta table

B.

Replace schema(schema) with option("maxFilesPerTriqqer", 1}

C.

Replace spark.read with spark.readStream

D.

Replace formatfdelta") with format("stream")

E.

Replace predict with a stream-friendly prediction function

Buy Now
Questions 13

A machine learning engineering team wants to build a continuous pipeline for data preparation of a machine learning application. The team would like the data to be fully processed and made ready for inference in a series of equal-sized batches.

Which of the following tools can be used to provide this type of continuous processing?

Options:

A.

Spark UDFs

B.

[Structured Streaming

C.

MLflow

D Delta Lake

D.

AutoML

Buy Now
Questions 14

A machine learning engineer wants to deploy a model for real-time serving using MLflow Model Serving. For the model, the machine learning engineer currently has one model version in each of the stages in the MLflow Model Registry. The engineer wants to know which model versions can be queried once Model Serving is enabled for the model.

Which of the following lists all of the MLflow Model Registry stages whose model versions are automatically deployed with Model Serving?

Options:

A.

Staging. Production. Archived

B.

Production

C.

None. Staging. Production. Archived

D.

Staging. Production

E.

[None. Staging. Production

Buy Now
Questions 15

A machine learning engineer has developed a model and registered it using the FeatureStoreClient fs. The model has model URI model_uri. The engineer now needs to perform batch inference on customer-level Spark DataFrame spark_df, but it is missing a few of the static features that were used when training the model. The customer_id column is the primary key of spark_df and the training set used when training and logging the model.

Which of the following code blocks can be used to compute predictions for spark_df when the missing feature values can be found in the Feature Store by searching for features by customer_id?

Options:

A.

df = fs.get_missing_features(spark_df, model_uri)

fs.score_model(model_uri, df)

B.

fs.score_model(model_uri, spark_df)

C.

df = fs.get_missing_features(spark_df, model_uri)

fs.score_batch(model_uri, df)

df = fs.get_missing_features(spark_df)

D.

fs.score_batch(model_uri, df)

E.

fs.score_batch(model_uri, spark_df)

Buy Now
Questions 16

A machine learning engineer wants to log feature importance data from a CSV file at path importance_path with an MLflow run for model model.

Which of the following code blocks will accomplish this task inside of an existing MLflow run block?

Options:

A.

Databricks-Machine-Learning-Professional Question 16 Option 1

B.

16

C.

mlflow.log_data(importance_path, "feature-importance.csv")

D.

mlflow.log_artifact(importance_path, "feature-importance.csv")

E.

None of these code blocks tan accomplish the task.

Buy Now
Questions 17

A machine learning engineer is attempting to create a webhook that will trigger a Databricks Jobjob_idwhen a model version for modelmodeltransitions into any MLflow Model Registry stage.

They have the following incomplete code block:

Databricks-Machine-Learning-Professional Question 17

Which of the following lines of code can be used to fill in the blank so that the code block accomplishes the task?

Options:

A.

"MODEL_VERSION_CREATED"

B.

"MODEL_VERSION_TRANSITIONED_TO_PRODUCTION"

C.

"MODEL_VERSION_TRANSITIONED_TO_STAGING"

D.

"MODEL_VERSION_TRANSITIONED_STAGE"

E.

"MODEL_VERSION_TRANSITIONED_TO_STAGING", "MODEL_VERSION_TRANSITIONED_TO_PRODUCTION"

Buy Now
Questions 18

Which of the following is a reason for using Jensen-Shannon (JS) distance over a Kolmogorov-Smirnov (KS) test for numeric feature drift detection?

Options:

A.

All of these reasons

B.

JS is not normalized or smoothed

C.

None of these reasons

D.

JS is more robust when working with large datasets

E.

JS does not require any manual threshold or cutoff determinations

Buy Now
Exam Name: Databricks Certified Machine Learning Professional
Last Update: Nov 21, 2024
Questions: 60

PDF + Testing Engine

$49.5  $164.99

Testing Engine

$37.5  $124.99
buy now Databricks-Machine-Learning-Professional testing engine

PDF (Q&A)

$31.5  $104.99
buy now Databricks-Machine-Learning-Professional pdf
dumpsmate guaranteed to pass
24/7 Customer Support

DumpsMate's team of experts is always available to respond your queries on exam preparation. Get professional answers on any topic of the certification syllabus. Our experts will thoroughly satisfy you.

Site Secure

mcafee secure

TESTED 24 Nov 2024